
Introduction to Information Retrieval and Semedico
Evaluation

Erik Faessler

Lehrstuhl für Computerlinguistik
Friedrich-Schiller-Universität Jena

Oberseminar
15.12.2017

Erik Faessler IR / Semedico Eval 1 / 9

Einführung

Ausgangspunkt:
Informationbedürfnis (information need)
(große) Textkollektion

Ziel:
Finde Suchterme im Corpus
Erstelle Liste von Trefferdokumenten

Erik Faessler IR / Semedico Eval 2 / 9

Beispiel / Intuition

Corpus:
Reuters RCV1 Auszug
~50k Dokumente von 810k
Textinhalte extrahiert

Demo
Beispieldaten
Naive Suche
Einfach(st)er Index

Erik Faessler IR / Semedico Eval 3 / 9

Der invertierte Index

Die zentrale Datenstruktur im IR
Uninvertiert: Normaler Zustand, Dokumente ’haben’ Wörter
Invertiert: Wörter ’haben’ Dokumente
Einfachstes Beispiel: Buchindex

Online edition (c)�2009 Cambridge UP

1.2 A first take at building an inverted index 7

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
Dictionary Postings

! Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

3. Do linguistic preprocessing, producing a list of normalized tokens, which
are the indexing terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted in-
dex, consisting of a dictionary and postings.

We will define and discuss the earlier stages of processing, that is, steps 1–3,
in Section 2.2 (page 22). Until then you can think of tokens and normalized
tokens as also loosely equivalent to words. Here, we assume that the first
3 steps have already been done, and we examine building a basic inverted
index by sort-based indexing.

Within a document collection, we assume that each document has a unique
serial number, known as the document identifier (docID). During index con-DOCID
struction, we can simply assign successive integers to each new document
when it is first encountered. The input to indexing is a list of normalized
tokens for each document, which we can equally think of as a list of pairs of
term and docID, as in Figure 1.4. The core indexing step is sorting this listSORTING

so that the terms are alphabetical, giving us the representation in the middle
column of Figure 1.4. Multiple occurrences of the same term from the same
document are then merged.5 Instances of the same term are then grouped,
and the result is split into a dictionary and postings, as shown in the right
column of Figure 1.4. Since a term generally occurs in a number of docu-
ments, this data organization already reduces the storage requirements of
the index. The dictionary also records some statistics, such as the number of
documents which contain each term (the document frequency, which is hereDOCUMENT

FREQUENCY also the length of each postings list). This information is not vital for a ba-
sic Boolean search engine, but it allows us to improve the efficiency of the

5. Unix users can note that these steps are similar to use of the sort and then uniq commands.

Erik Faessler IR / Semedico Eval 4 / 9

Erweiterungen des invertierten Index

Termfrequenz pro Dokument
Termposition im Dokument
Textlängennorm
Speichern von Dokumententextauszügen
Massen von Optimierungen
Mehrere Felder pro Dokument
Lucenevortrag?

Erik Faessler IR / Semedico Eval 5 / 9

Ranking nach Relevanz

Bislang boolesche Suche: Dokument getroffen / nicht getroffen
Vektorraummodell (TF/IDF)

Online edition (c)�2009 Cambridge UP

6.3 The vector space model for scoring 121

0 1
0

1

jealous

gossip

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ

! Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations V⃗(d1) and V⃗(d2)COSINE SIMILARITY

sim(d1, d2) =
V⃗(d1) · V⃗(d2)

|V⃗(d1)||V⃗(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors V⃗(d1) and V⃗(d2), while the denominator is the product of
their Euclidean lengths. The dot product x⃗ · y⃗ of two vectors is defined asEUCLIDEAN LENGTH

∑M
i=1 xiyi. Let V⃗(d) denote the document vector for d, with M components

V⃗1(d) . . . V⃗M(d). The Euclidean length of d is defined to be
√

∑M
i=1 V⃗2

i (d).
The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-

NORMALIZATION the vectors V⃗(d1) and V⃗(d2) to unit vectors v⃗(d1) = V⃗(d1)/|V⃗(d1)| and

Probabilistische Modelle (Okapi BM25)

Erik Faessler IR / Semedico Eval 6 / 9

Evaluation

Evaluationscorpora
Dokumente
Anfragen (queries)
Relevanzbeurteilung von Dokumenten pro Anfrage

Die Information Retrieval Challenge Serie: TREC
http://trec.nist.gov/
Evaluationmaße:

Precision, Recall, F-Score
mean average precision

Erik Faessler IR / Semedico Eval 7 / 9

Mean Average Precision

Q ~ Menge von Queries
{d1, . . . ,dmj} ~ relevante Dokumente für Anfrage qj ∈ Q
Rjk ~ Menge der gerankten retrieval Ergebnisse vom ersten
Ergebnis bis zum Dokument dk

Precision ~
#(relevante gefunden)

#(gefunden)

Online edition (c)�2009 Cambridge UP

160 8 Evaluation in information retrieval

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

! Figure 8.3 Averaged 11-point precision/recall graph across 50 queries for a rep-
resentative TREC system. The Mean Average Precision for this system is 0.2553.

average of the precision value obtained for the set of top k documents exist-
ing after each relevant document is retrieved, and this value is then averaged
over information needs. That is, if the set of relevant documents for an in-
formation need qj ∈ Q is {d1, . . . dmj} and Rjk is the set of ranked retrieval
results from the top result until you get to document dk, then

MAP(Q) =
1

|Q|
|Q|
∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk)(8.8)

When a relevant document is not retrieved at all,1 the precision value in the
above equation is taken to be 0. For a single information need, the average
precision approximates the area under the uninterpolated precision-recall
curve, and so the MAP is roughly the average area under the precision-recall
curve for a set of queries.

Using MAP, fixed recall levels are not chosen, and there is no interpola-
tion. The MAP value for a test collection is the arithmetic mean of average

1. A system may not fully order all documents in the collection in response to a query or at
any rate an evaluation exercise may be based on submitting only the top k results for each
information need.

Erik Faessler IR / Semedico Eval 8 / 9

Semedico

Biomedizinische (noch) Suchmaschine am JULIE Lab
http://semedico.org/
Evaluation: TREC genomics 2005

Erik Faessler IR / Semedico Eval 9 / 9

Introduction to Information Retrieval and Semedico
Evaluation

Erik Faessler

Lehrstuhl für Computerlinguistik
Friedrich-Schiller-Universität Jena

Oberseminar
15.12.2017

Erik Faessler IR / Semedico Eval 10 / 9

