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You shall know a word by the

company it keeps!
Firth, 1957

He reads a poem.

She reads a novell.

The novel has 312 pages.
The poem fits on two pages.
She listens to an opera.

He listens to jazz.
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Counting Cooccurrences

read | pages listen

novel 98 60 2

poem 67 10 3

opera 4 3 38

jazz 2 1 47
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Vector Representation
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Distance and Similarity
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Don’t Get Fooled by Word Embeddings

Johannes Hellrich & Udo Hahn




Dimensionality Problem

* One dimension per word
* 50k to 100k dimensions
- Large files and slow operations

 What about synonyms — it shouldn‘t matter if
| buy or purchase a novel
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August 11, 2017, Montreal, Canada
Word Embeddings

* Represent words as dense vectors with 200—
500 instead of 50k—100k dimensions

* Very popular in computational linguistics and
digital humanities

* Better on judging word similarity
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similarity

Application in DH: Semantic
Development of Herz ,heart’

0.8
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A Lunge 'lung

Gemduth 'mind'
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0.65 erschrecke 'frighten’
0.6
1800 1900 2000

Hellrich & Hahn, DH 2016
First applied by Kim et al., ACL 2014 Workshop on Language
Technologies and Computational Social Science
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Types of Word Embeddings

Singular Value Decomposition
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text
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Neural Word Embeddings

* Extremely popular skip-
gram negative sampling

algorithm SGNS/word2vec w(2)
(Mikolov et al., NIPS 2013)

INPUT PROJECTION  OUTPUT

w(t-1)

 Alternative neural Y —
embeddings using an \ it
explicit cooccurrence

matrix: GloVe (Pennington et
al., EMNLP 2014)

w(t+2)
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Training Neural Word Embeddings

 Word Embeddings are updated after looking at the text
* Tries to minimize false predictions (cost function)
* Will lead us to a local, yet rarely to the global minimum
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Singular Value Decomposition

2 4l

Cooccur-
rences

* Express Cooccurrences as U2
* U represents words, /' context words
* > measures importance of dimensions
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Singular Value Decomposition

Cooccur-
rences

* Classical SVD embeddings: U ,, selecting only d
dimensions from U based on 2
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SVDppy

* Levy et al., TACL 2015
* Positive pointwise mutual information
instead of frequency

e Post-/preprocessing inspired by SGNS and
GloVe
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Measuring Reliability

* Train multiple models with identical parameters
On one corpus

* Measure percentage of identical neighborhoods
for each word between models

* Hellrich&Hahn, COLING 2016
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August 11, 2017, Montreal, Canada
Measuring Reliability

* Train multiple models with identical parameters
Ooh one corpus

* Measure percentage of identical neighborhoods
for each word between models

* Example: No agreement at neighborhood size 1
for poem

opera opera 'T opera
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August 11, 2017, Montreal, Canada
Measuring Reliability

* Train multiple models with identical parameters
Ooh one corpus

* Measure percentage of identical neighborhoods
for each word between models

 Example: Agreement at neighborhood size 2 for
poem
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Experiment

* 3 models each for SGNS, GloVe and SVD,,,,

* Trained on corpus of 645 German texts from
19th century, subset of Deutsches Textarchiv
‘German Text Archive’

e Technical Details:

* Window size 5,
* 300 dimensions
* hyperwords toolkit
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Embedding

Model

SGNS 1

SGNS 2

SGNS 3

GloVe 1

GloVe 2

GloVe 3

SVDppp» all

Reliability for Herz ‘heart’

First
Neighbor

schmerzen

Second
Neighbor
beklommen

Third

Neighbor

busen

Fourth
Neighbor

bluten

Fifth
Neighbor
herzen

‘pain’ ‘anxious’ ‘bosom’ ‘to bleed’ ‘to caress’
bluten klopfend busen beklommen herzen
‘to bleed’ ‘beating’ ‘bosom’ ‘anxious’ ‘to caress’

herzen busen klopfend beklommen bluten

‘to caress’ ‘bosom’ ‘beating’ ‘anxious’ ‘to bleed’
gemiut mein seele liebe brust
‘mind’ ‘my’ ‘soul’ ‘love’ ‘chest’
gemiut mein seele brust liebe
‘mind’ ‘my’ ‘soul’ ‘chest’ ‘love’
gemut mein seele brust liebe
‘mind’ ‘my’ ‘soul’ ‘chest’ ‘love’
busen fihlen liebe schmerzen menschenherz
‘bosom’ ‘to feel’ ‘love’ ‘pain’ ‘human heart’
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Reliability for 1000 most frequent nouns

depending on neighborhood size
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Reliability for 1001000 most frequent
nouns depending on word frequency
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Percentage of Identical Neighbors




.
Conclusion

* Neural word embeddings are unreliable

* SVDy,,), is reliable and performs very similar
on evaluation tasks

* Also think about: Preprocessing often
includes random sampling
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Accessible SVD,;,,, embeddings for
diachronic linguistics

Welcome to JeSemE

The Jena Semantic Explorer

“ Search
© COHA' 'DTA' ' GBFiction| ' GB German ' RSC

http://jeseme.org

Hellrich & Hahn, ACL 2017
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Accessible SVD,;,,, embeddings for
diachronic linguistics

JeSemE - The Jena Semantic Explorer

Results for "heart® in Corpus of Historical American English
) Note: lowercased ,
Search in Corpus of Historical American English

Similar Words

0384

D6 o qum—

054

034

T T T 1 T T T T T T T T T T T T T
1630 18508 18708 18308 1910 18308 19508 19708 19905
W hearts M soul M stroke M lungs

http://jeseme.org

Hellrich & Hahn, ACL 2017
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Word Embedding Performance

Method WordSim  WordSim  Brunietal. Radinsky etal. Luongetal. Hilletal. Google MSR
Similarity Relatedness MEN M. Turk Rare Words  SimLex | Add/Mul Add/Mul
PPMI 155 697 745 .686 462 .393 .5537.679 .306/.535
SVD 793 601 778 .666 S14 432 554/7.591 408 /.468
SGNS 793 .685 174 .693 470 438 .676/.688 .618/.645
GloVe 125 .604 129 632 403 398 569 /.596 .533/.580

Table 4: Performance of each method across different tasks using the best configuration for that method and task combination,
assuming win = 2.

From Levy et al. (2015)
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Reliability of word2vec at different frequencies
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 Hellrich&Hahn, COLING 2016
 word2vec models trained on Google Books corpora

Johannes Hellrich & Udo Hahn
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Warning: Automatic word change research is
focused on high frequency words
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