
Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 1  

Jena University Language & Information Engineering (JULIE) 
Lab Friedrich-Schiller-University Jena, Germany  

	
http://www.julielab.de

Grundlagen Kontextualisierter 
Wordembeddings 

Erik Fäßler 



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 2  

Language Models 

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ;⇥x,
 �
⇥LSTM ,⇥s) ) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L+ 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotaskk = E(Rk;⇥
task) = �task

LX

j=0

staskj hLM
k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks

Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ;⇥x,
 �
⇥LSTM ,⇥s) ) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L+ 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotaskk = E(Rk;⇥
task) = �task

LX

j=0

staskj hLM
k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks

Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

Forward-Model	

Backward-Model	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 3  

Deep LM 
Method

With long short term memory (LSTM) network, 
predicting the next words in both directions to build 
biLMs

�36

have a nice one …

Output layer

Hidden layers 
(LSTMs)

Embedding layer

…

a nice one

xk

ok

k − 1

k − 1

Expanded in the forward direction of kThe forward LM architecture

• Overview 

• Method 

• Evaluation 

• Analysis 

• Comments

tk

h LM
k1

h LM
k2

https://de.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 4  

Deep Bidirectional LM 
Deep	Bidirectional	RNNs

2/2/17

static	word	embeddings	(word2vec,	glove,	
fasttext,	...)	

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/syllabus.html,	Lecture	8	(Feb	2),	Slide	46	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 5  

ELMo (Peters et al.)  

•  BI-LSTM-LM mit L=2 Layern 
•  Für jeden Token-position k extrahiere 

–  den statischen Embeddingvector (CNN character n-grams!) 
–  die forward und backword biLM Zwischenrepräsentationen 

•  Linearkombination der Vektoren 
•  Task-spezifische Parameter 

•  Ersetze im eigentlichen Aufgaben-KNN die statischen 
Embeddings durch ELMo 

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ;⇥x,
 �
⇥LSTM ,⇥s) ) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L+ 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotaskk = E(Rk;⇥
task) = �task

LX

j=0

staskj hLM
k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks

Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ;⇥x,
 �
⇥LSTM ,⇥s) ) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L+ 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotaskk = E(Rk;⇥
task) = �task

LX

j=0

staskj hLM
k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks

Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

0	=	Token	layer	=		xk
LM



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 6  

ELMo Vectors 

https://ireneli.eu/2018/12/17/elmo-in-practice/	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 7  

ELMo Model 

https://de.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 8  

•  Question answering (Stanford Question Answering 
Dataset, SQuAD) 

•  Textual entailment (Stanford Natural Language Inference 
(SNLI) corpus 

•  Semantic role labeling (OntoNotes) 
•  Coreference solution (OntoNotes) 
•  Named Entity Extraction (CoNLL 2003 NER) 
•  Sentiment analysis 



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 9  

ELMo Evaluation 

TASK PREVIOUS SOTA
OUR

BASELINE

ELMO +

BASELINE

INCREASE

(ABSOLUTE/

RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-

nicht-triviale	KNN	
Architekturen	



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 10  

Flair (Akbik et al.) 

•  Basiert ebenfalls auf biLMs 
•  Allerdings nicht auf Token- sondern auf Zeichenebene 
•  Bislang nur Sequenzentagging 
•  Im Flair Framework gibt es auch 

Dokumentenklassifikation 
•  Flair embedding für token k: 

–  Forward: LM Hidden State nach letztem Token Zeichen 
–  Backward: LM Hidden State vor erstem Zeichen 

•  Im Flair Paper und –Framework werden die 
unterschiedlichen Embeddings concateniert (gestackt) 
–  Flair Forward + Backward + (GloVe | word2vec | fasttext | ...) 



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 11  

rWashington

Figure 2: Extraction of a contextual string embedding for a word (“Washington”) in a sentential context. From the forward
language model (shown in red), we extract the output hidden state after the last character in the word. This hidden state
thus contains information propagated from the beginning of the sentence up to this point. From the backward language model
(shown in blue), we extract the output hidden state before the first character in the word. It thus contains information propagated
from the end of the sentence to this point. Both output hidden states are concatenated to form the final embedding.

In the LSTM architecture, the conditional probability P (xt|x0:t�1) is approximately a function of the
network output ht.

P (xt|x0:t�1) ⇡
TY

t=0

P (xt|ht; ✓) (2)

ht represents the entire past of the character sequence. In an LSTM in particular, it is computed recur-
sively, with the help of an additional recurrent quantity ct, the memory cell,

ht (x0:t�1) = fh (xt�1,ht�1, ct�1; ✓)

ct (x0:t�1) = fc (xt�1,ht�1, ct�1; ✓) ,

where ✓ denotes all the parameters of the model. h�1 and c�1 can be initialized with zero or can be
treated as part of the model parameters ✓. In our model, a fully conected softmax layer (without bias) is
placed ontop of ht, so the likelihood of every character is given by

P (xt|ht;V) = softmax (Vht + b) (3)

=
exp (Vht + b)

kexp (Vht + b)k1
(4)

where V and b, weights and biases, are part of the model parameters ✓ (Graves, 2013; Jozefowicz et al.,
2016).

2.2 Extracting Word Representations
We utilize the hidden states of a forward-backward recurrent neural network to create contextualized
word embeddings. This means, alongside with the forward model (2), we also have a backward model,
which works in the same way but in the reversed direction:

P b (xt|xt+1:T ) ⇡
TY

t=0

P b
⇣
xt|hb

t , ✓
⌘

(5)

hb
t = f b

h

⇣
xt+1,h

b
t+1, c

b
t+1; ✓

⌘
(6)

cbt = f b
c

⇣
xt+1,h

b
t+1, c

b
t+1; ✓

⌘
(7)

Note that, in the following, we will use the superscript ·f to define hf
t := ht, c

f
t := ct for the forward

model described in the previous section.
From this forward-backward LM, we concatenate the following hidden character states for each word:

from the fLM, we extract the output hidden state after the last character in the word. Since the fLM



Oberseminar 26.06.2019	

Erik Fäßler Kontextualisierte	Worteinbettungen	 12  

ELMo	


