Grundlagen Kontextualisierter Wordembeddings

Erik Fäßler

Jena University Language & Information Engineering (JULIE)
Lab Friedrich-Schiller-University Jena, Germany

http://www.julielab.de

Language Models

Forward-Model

given the history $(t_1, ..., t_{k-1})$:

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1}).$$

Backward-Model

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N).$$

Deep LM

With long short term memory (LSTM) network, predicting the next words in both directions to build biLMs

The forward LM architecture Expanded in the forward direction of *k* nice a one $\mathbf{0}_k$ **Output layer** $\overrightarrow{\mathbf{h}}_{k2}^{\mathrm{LM}}$ **Hidden layers** (LSTMs) $\overrightarrow{\mathbf{h}}_{k1}^{\mathrm{LM}}$ **Embedding layer** \mathbf{X}_k have nice one

https://de.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

Deep Bidirectional LM

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/syllabus.html, Lecture 8 (Feb 2), Slide 46

Deep Bidirectional RNNs

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\dot{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \dot{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(U[\vec{h}_{t}^{(L)}; \dot{h}_{t}^{(L)}] + c)$$

static word embeddings (word2vec, glove, fasttext, ...)

Each memory layer passes an intermediate sequential representation to the next.

ELMo (Peters et al.)

- BI-LSTM-LM mit L=2 Layern
- Für jeden Token-position k extrahiere
 - den statischen Embeddingvector (CNN character n-grams!)
 - die forward und backword biLM Zwischenrepräsentationen

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

- Linearkombination der Vektoren 0 = Token layer = x_k^{LM}
- Task-spezifische Parameter

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

 Ersetze im eigentlichen Aufgaben-KNN die statischen Embeddings durch ELMo

ELMo Vectors

Structure

Each token t_k

L-layer biLM computes 2L+1 representations

k is the k-th token

j is the j-th biLM layer

https://ireneli.eu/2018/12/17/elmo-in-practice/

ELMo Model

ELMo represents a word t_k as a linear combination of corresponding hidden layers (inc. its embedding)

https://de.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

- Question answering (Stanford Question Answering Dataset, SQuAD)
- Textual entailment (Stanford Natural Language Inference (SNLI) corpus
- Semantic role labeling (OntoNotes)
- Coreference solution (OntoNotes)
- Named Entity Extraction (CoNLL 2003 NER)
- Sentiment analysis

ELMo Evaluation

nicht-triviale	KNN
Architektur	en

TASK	PREVIOUS SOTA		OUR BASELIN	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Flair (Akbik et al.)

- Basiert ebenfalls auf biLMs
- Allerdings nicht auf Token- sondern auf Zeichenebene
- Bislang nur Sequenzentagging
- Im Flair Framework gibt es auch Dokumentenklassifikation
- Flair embedding für token k:
 - Forward: LM Hidden State nach letztem Token Zeichen
 - Backward: LM Hidden State vor erstem Zeichen
- Im Flair Paper und –Framework werden die unterschiedlichen Embeddings concateniert (gestackt)
 - Flair Forward + Backward + (GloVe | word2vec | fasttext | ...)

ELMo

Task	Language	Dataset	Flair	Previous best
Named Entity Recognition	English	Conll-03	93.18 (F1)	92.22 (Peters et al., 2018)
Named Entity Recognition	English	Ontonotes	89.3 (F1)	86.28 (Chiu et al., 2016)
Emerging Entity Detection	English	WNUT-17	49.49 (F1)	45.55 (Aguilar et al., 2018)
Part-of-Speech tagging	English	WSJ	97.85	97.64 (Choi, 2016)
Chunking	English	Conll-2000	96.72 (F1)	96.36 (Peters et al., 2017)
Named Entity Recognition	German	Conll-03	88.27 (F1)	78.76 (Lample et al., 2016)
Named Entity Recognition	German	Germeval	84.65 (F1)	79.08 (Hänig et al, 2014)
Named Entity Recognition	Dutch	Conll-03	90.44 (F1)	81.74 (Lample et al., 2016)
Named Entity Recognition	Polish	PolEval-2018	86.6 (F1) (Borchmann et al., 2018)	85.1 (PolDeepNer)