Computerlinguistik I

Vorlesung im WiSe 2018/2019 (M-GSW-09)

Prof. Dr. Udo Hahn

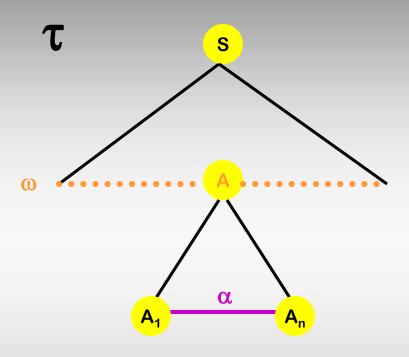
Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

http://www.julielab.de

 Das Wort- bzw. Erkennungsproblem für eine kontextfreie Grammatik G: Zeige für G = (N, T, P, S) und $\omega \in T^*$, dass ω von G (nicht) erzeugt werden kann (d.h.: $\omega \in \mathcal{L}(G)$ oder $\omega \notin \mathcal{L}(G)$). Ein Algorithmus, der dieses Problem löst, heißt Erkennungsalgorithmus (oder Recognizer).

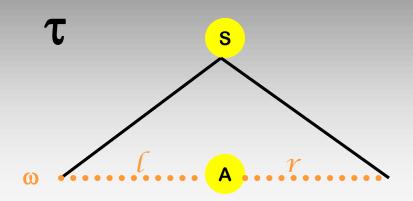
 Das Analyseproblem für eine kontextfreie Grammatik G:

Bestimme für G = (N, T, P, S) und $\omega \in T^*$ entweder eine syntaktische Struktur von ω bezüglich G oder zeige, dass $\omega \notin \mathcal{L}(G)$.

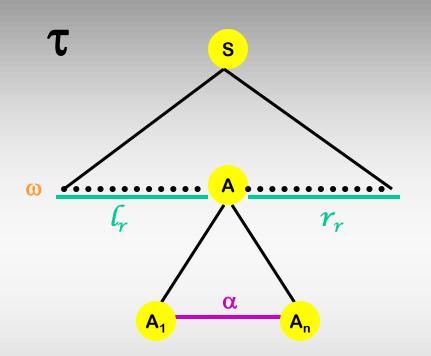

Ein Algorithmus, der dieses Problem löst, heißt Analysealgorithmus (oder Parser).

Die Bestimmung der syntaktischen Struktur heißt Syntaxanalyse bzw. Parsing.

Bemerkungen zur Syntaxanalyse von CFGs


- Ein Analysealgorithmus löst mit der (fehlschlagenden)
 Bestimmung einer syntaktischen Struktur stets auch das Wortproblem.
- Für Typ-0-Grammatiken ist das Wortproblem unlösbar.
- Für Typ-1-Grammatiken, die bestimmten Beschränkungen unterliegen, und generell für Typ-2-Grammatiken ist das Wortproblem lösbar – wenn auch (für Typ-1) mit z.T. beträchtlicher, aber noch polynomialer Berechnungskomplexität.
- Für Typ-3-Grammatiken ist das Wort- und Analyseproblem einfach lösbar (linear).

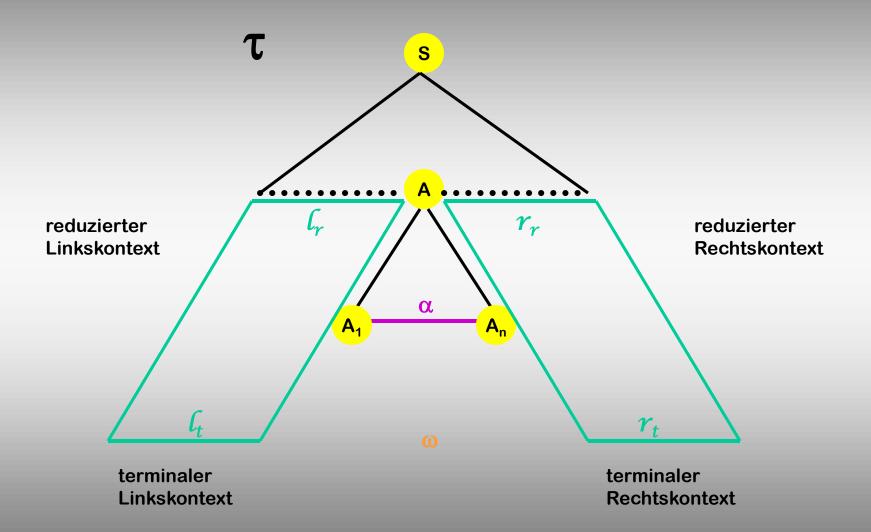
 Sei ω ein von der kontextfreien Grammatik G erzeugtes Wort und τ ein zugehöriger Strukturbaum, der eine feste (beliebig wählbare, aber dann gegebene) Verzweigung besitzt, die aus einem Knoten und seinen direkten Nachfolgern besteht. Diese Verzeigung beschreibt die Anwendung einer Produktion, etwa $A \rightarrow \alpha$ mit $\alpha = A_1 \dots A_n$ und $A_i \in \mathcal{V}$ für $1 \le i \le n$.


• Durch die Fixierung einer festen Verzweigung und der zugehörigen Anwendung einer Produktion wird τ in Teilstrukturen zerlegt.

Dazu betrachten wir die Klasse τ_A aller Strukturbäume zu G, die Anfangsteilbäume von τ sind (d.h. die gleiche Wurzel besitzen) und den fest herausgegriffenen Knoten A als Endknoten haben. Diese haben Endschnittbilder der Form $\ell A r$ mit $\ell, r \in \mathcal{V}^*$ und beschreiben die Ableitung: $S * \Rightarrow \ell A r$?

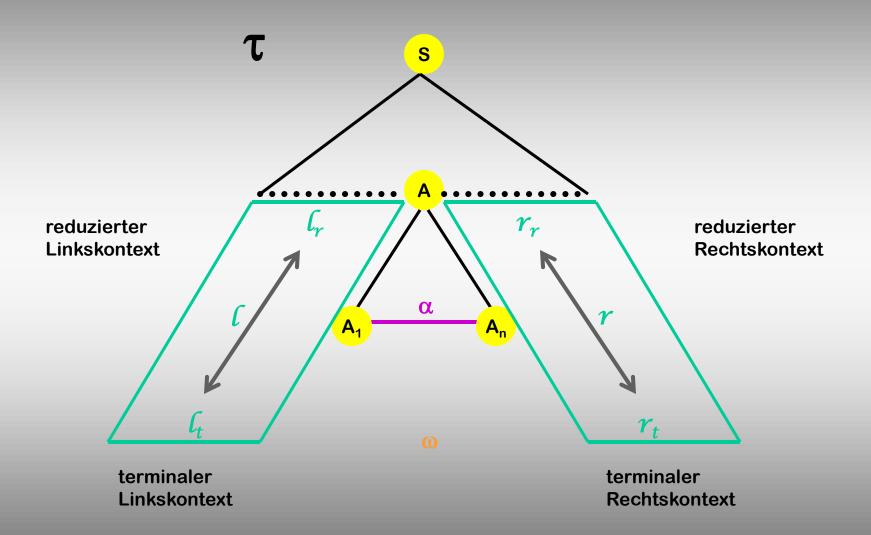
• Sei τ_{\min} der eindeutig fixierte Strukturbaum in $\tau_{\rm A}$ mit minimaler Knotenzahl und ℓ_{γ} A r_{γ} sein Endschnittbild.

 ℓ_r ist der reduzierte Linkskontext und r_r der reduzierte Rechtskontext zur betrachteten Anwendung der Produktion $A \to \alpha$.



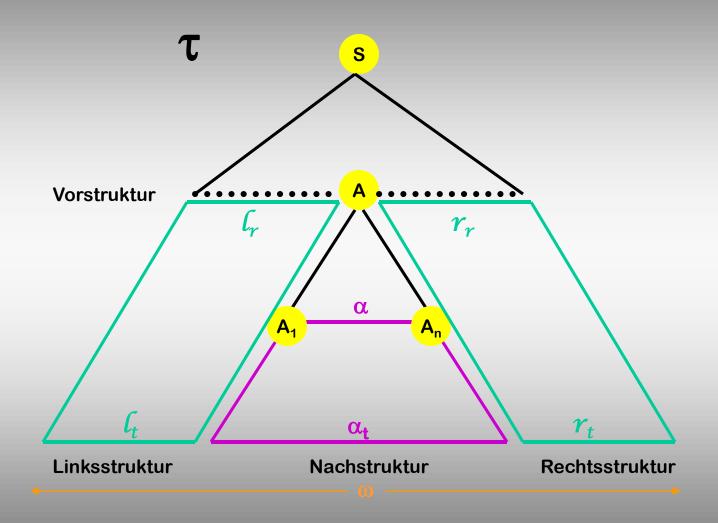
reduzierter Linkskontext

reduzierter


Rechtskontext

• Sei τ_{max} der eindeutig fixierte Strukturbaum in τ_{A} mit maximaler Knotenzahl und ℓ_t A r_t sein Endschnittbild. Dann sind ℓ_t , $r_t \in \mathbf{T}^*$. ℓ_t heißt dann terminaler Linkskontext und r_t terminaler Rechtskontext zur betrachteten Anwendung der Produktion A $\rightarrow \alpha$.

• Sei τ_{bel} ein beliebig herausgegriffener Strukturbaum in τ_{A} und sei $\ell A \gamma$ sein Endschnittbild. Dann gilt:


$$\ell_r \stackrel{*}{\Rightarrow} \ell \stackrel{*}{\Rightarrow} \ell_t \text{ und } r_r \stackrel{*}{\Rightarrow} r \stackrel{*}{\Rightarrow} r_t.$$

• Die fest herausgegriffene Anwendung der Produktion $A \to \alpha$ bestimmt in der betrachteten syntaktischen Struktur von ω somit vier Teilstrukturen, die Ableitungen für

$$\mathbf{S}^* \Rightarrow \ell_r \mathbf{A} \; r_r \;, \; \ell_r^* \Rightarrow \ell_t \;, \; \alpha^* \Rightarrow \alpha_t \; \text{und} \; \; r_r^* \Rightarrow r_t$$

mit $\mathbf{\omega} = \ell_t \; \alpha_t \; r_t \; \text{entsprechen}.$

• Man nennt diese Teilstrukturen die zur herausgegriffenen Anwendung der Produktion $A \to \alpha$ gehörige Vorstruktur, Linksstruktur, Nachstruktur und Rechtsstruktur.

